Loss of sleep spindle frequency deceleration in Obstructive Sleep Apnea. Academic Article uri icon

Overview

abstract

  • OBJECTIVE: Sleep spindles have been suggested as surrogates of thalamo-cortical activity. Internal frequency modulation within a spindle's time frame has been demonstrated in healthy subjects, showing that spindles tend to decelerate their frequency before termination. We investigated internal frequency modulation of slow and fast spindles according to Obstructive Sleep Apnea (OSA) severity and brain topography. METHODS: Seven non-OSA subjects and 21 patients with OSA contributed with 30min of Non-REM sleep stage 2, subjected to a Matching pursuit procedure with Gabor chirplet functions for automatic detection of sleep spindles and quantification of sleep spindle internal frequency modulation (chirp rate). RESULTS: Moderate OSA patients showed an inferior percentage of slow spindles with deceleration when compared to Mild and Non-OSA groups in frontal and parietal regions. In parietal regions, the percentage of slow spindles with deceleration was negatively correlated with global apnea-hypopnea index (rs=-0.519, p=0.005). DISCUSSION: Loss of physiological sleep spindle deceleration may either represent a disruption of thalamo-cortical loops generating spindle oscillations or some compensatory mechanism, an interesting venue for future research in the context of cognitive dysfunction in OSA. SIGNIFICANCE: Quantification of internal frequency modulation (chirp rate) is proposed as a promising approach to advance description of sleep spindle dynamics in brain pathology.

publication date

  • July 27, 2013

Research

keywords

  • Brain
  • Brain Waves
  • Sleep
  • Sleep Apnea, Obstructive

Identity

Scopus Document Identifier

  • 84892485858

Digital Object Identifier (DOI)

  • 10.1016/j.clinph.2013.07.005

PubMed ID

  • 23899859

Additional Document Info

volume

  • 125

issue

  • 2