The structure of the human apolipoprotein C-II gene. Electron microscopic analysis of RNA:DNA hybrids, complete nucleotide sequence, and identification of 5' homologous sequences among apolipoprotein genes.
Academic Article
Overview
abstract
Cloned human apo-C-II cDNA was used as a hybridization probe to identify the human apo-C-II gene in a genomic library constructed in our laboratory. The isolated apo-C-II DNA was studied both by electron microscopy and by direct sequence analysis. Ultrastructural morphological analysis of RNA-DNA hybrids revealed that the apo-C-II gene had complex structures because of regions of inverted complementary sequences in and around the gene forming stem-and-loop structures which interfere with the formation of stable RNA:DNA hybrids. Extensive morphological analysis revealed a minimum of 3 intervening sequences (IVS), and their lengths were measured. Direct sequence analysis of the cloned gene confirmed the presence of 3 IVS. There are 4 Alu type sequences in IVS-I. We sequenced 4340 nucleotides which include 545 nucleotides in the 5' flanking region, the entire gene which spans 3320 nucleotides, and 475 nucleotides in the 3' flanking region which also encompasses an additional Alu sequence. The 5' end of the gene was identified by primer extension and sequencing of the primer extended cDNA. Apo-C-II mRNA structure was deduced from the cDNA sequence, the primer extension experiments, and the genomic sequence. It is 494 nucleotides in length. Its sequence differs from previously published sequences in that there are 7 additional nucleotides before the polyadenylate tail. In the 5' flanking region, nucleotides -234 to -213 encompass a GC-rich region which exhibits high homology (greater than 70%) to the 5' flanking regions of the genes of all the apolipoproteins published to date, namely, apo-A-II (-497 to -471), apo-A-I (approximately -196 to -179), apo-E (-409 to -391), and apo-C-III (approximately -116 to -103). This highly conserved region might represent some evolutionarily conserved sequences from these related genes and/or might represent a region with regulatory function.