Specificity of monosynaptic sensory-motor connections imposed by repellent Sema3E-PlexinD1 signaling.
Academic Article
Overview
abstract
In mammalian spinal cord, group Ia proprioceptive afferents form selective monosynaptic connections with a select group of motor pool targets. The extent to which sensory recognition of motor neurons contributes to the selectivity of sensory-motor connections remains unclear. We show here that proprioceptive sensory afferents that express PlexinD1 avoid forming monosynaptic connections with neurons in Sema3E(+) motor pools yet are able to form direct connections with neurons in Sema3E(off) motor pools. Anatomical and electrophysiological analysis of mice in which Sema3E-PlexinD1 signaling has been deregulated or inactivated genetically reveals that repellent signaling underlies aspects of the specificity of monosynaptic sensory-motor connectivity in these reflex arcs. A semaphorin-based system of motor neuron recognition and repulsion therefore contributes to the formation of specific sensory-motor connections in mammalian spinal cord.