With blood in the joint - what happens next? Could activation of a pro-inflammatory signalling axis leading to iRhom2/TNFα-convertase-dependent release of TNFα contribute to haemophilic arthropathy? Review uri icon

Overview

abstract

  • One of the main complications of haemophilia A is haemophilic arthropathy (HA), a debilitating disease with a significant negative impact on motility and quality of life. Despite major advances in the treatment of haemophilia A, many patients still suffer from HA. We wish to develop new treatments for HA, but must first better understand its causes. Our laboratory studies molecular scissors that release the pro-inflammatory cytokine tumour necrosis factor alpha (TNFα) from cells. TNFα is considered the 'fire alarm' of the body - it helps to fight infections, but can also cause diseases such as inflammatory arthritis. We know that the molecular scissors, called TNFα convertase (TACE), and its newly discovered regulator termed iRhom2 can be rapidly activated by small amounts of cytokines, growth factors, and pro-inflammatory mediators present in the blood. We hypothesize that the rapid activation of TACE could help explain one of the unsolved mysteries regarding the development of HA, which is how even small amounts of blood can provoke a persistent inflammatory response. We propose that once blood enters the joint, iRhom2 and TACE are activated to release TNFα and that this could promote the development of HA in a similar manner to that in which it promotes rheumatoid arthritis (RA). We are currently using immune cells stimulated with blood degradation products, and mouse models of HA, to test this hypothesis. If successful, our study could provide the rationale for testing anti-TNF antibodies, which are already used to treat RA, for the treatment of HA. In addition, they might uncover iRhom2 and TACE as attractive new candidate targets for the treatment of HA.

publication date

  • May 1, 2014

Research

keywords

  • ADAM Proteins
  • Carrier Proteins
  • Hemarthrosis
  • Hemophilia A
  • Signal Transduction
  • Tumor Necrosis Factor-alpha

Identity

Scopus Document Identifier

  • 84899534671

Digital Object Identifier (DOI)

  • 10.1111/hae.12416

PubMed ID

  • 24762269

Additional Document Info

volume

  • 20 Suppl 4