p38 MAPK-inhibited dendritic cells induce superior antitumour immune responses and overcome regulatory T-cell-mediated immunosuppression.
Academic Article
Overview
abstract
Dendritic cell (DC)-based cancer immunotherapy is a promising method, but so far has demonstrated limited clinical benefits. Regulatory T cells (Tregs) represent a major obstacle to cancer immunotherapy approaches. Here we show that inhibiting p38 MAPK during DC differentiation enables DCs to activate tumour-specific effector T cells (Teff), inhibiting the conversion of Treg and compromising Treg inhibitory effects on Teff. Inhibition of p38 MAPK in DCs lowers expression of PPARĪ³, activating p50 and upregulating OX40L expression in DCs. OX40L/OX40 interactions between DCs and Teff and/or Treg are critical for priming effective and therapeutic antitumour responses. Similarly, p38 MAPK inhibition also augments the T-cell stimulatory capacity of human monocyte-derived DCs in the presence of Treg. These findings contribute to ongoing efforts to improve DC-based immunotherapy in human cancers.