Possible functions of contextual modulations and receptive field nonlinearities: pop-out and texture segmentation. Academic Article uri icon

Overview

abstract

  • When analyzing a visual image, the brain has to achieve several goals quickly. One crucial goal is to rapidly detect parts of the visual scene that might be behaviorally relevant, while another one is to segment the image into objects, to enable an internal representation of the world. Both of these processes can be driven by local variations in any of several image attributes such as luminance, color, and texture. Here, focusing on texture defined by local orientation, we propose that the two processes are mediated by separate mechanisms that function in parallel. More specifically, differences in orientation can cause an object to "pop out" and attract visual attention, if its orientation differs from that of the surrounding objects. Differences in orientation can also signal a boundary between objects and therefore provide useful information for image segmentation. We propose that contextual response modulations in primary visual cortex (V1) are responsible for orientation pop-out, while a different kind of receptive field nonlinearity in secondary visual cortex (V2) is responsible for orientation-based texture segmentation. We review a recent experiment that led us to put forward this hypothesis along with other research literature relevant to this notion.

publication date

  • July 24, 2014

Research

keywords

  • Visual Cortex
  • Visual Perception

Identity

PubMed Central ID

  • PMC4253048

Scopus Document Identifier

  • 84921914113

Digital Object Identifier (DOI)

  • 10.1016/j.visres.2014.07.002

PubMed ID

  • 25064441

Additional Document Info

volume

  • 104