Surface engineering of graphene-based nanomaterials for biomedical applications. Review uri icon

Overview

abstract

  • Graphene-based nanomaterials have attracted tremendous interest over the past decade due to their unique electronic, optical, mechanical, and chemical properties. However, the biomedical applications of these intriguing nanomaterials are still limited due to their suboptimal solubility/biocompatibility, potential toxicity, and difficulties in achieving active tumor targeting, just to name a few. In this Topical Review, we will discuss in detail the important role of surface engineering (i.e., bioconjugation) in improving the in vitro/in vivo stability and enriching the functionality of graphene-based nanomaterials, which can enable single/multimodality imaging (e.g., optical imaging, positron emission tomography, magnetic resonance imaging) and therapy (e.g., photothermal therapy, photodynamic therapy, and drug/gene delivery) of cancer. Current challenges and future research directions are also discussed and we believe that graphene-based nanomaterials are attractive nanoplatforms for a broad array of future biomedical applications.

publication date

  • August 18, 2014

Research

keywords

  • Biomedical Research
  • Chemical Engineering
  • Graphite
  • Nanostructures
  • Nanotechnology

Identity

PubMed Central ID

  • PMC4166029

Scopus Document Identifier

  • 84921477482

Digital Object Identifier (DOI)

  • 10.1021/bc500332c

PubMed ID

  • 25117569

Additional Document Info

volume

  • 25

issue

  • 9