Cannabinoid-induced actomyosin contractility shapes neuronal morphology and growth. Academic Article uri icon

Overview

abstract

  • Endocannabinoids are recently recognized regulators of brain development, but molecular effectors downstream of type-1 cannabinoid receptor (CB1R)-activation remain incompletely understood. We report atypical coupling of neuronal CB1Rs, after activation by endo- or exocannabinoids such as the marijuana component ∆(9)-tetrahydrocannabinol, to heterotrimeric G12/G13 proteins that triggers rapid and reversible non-muscle myosin II (NM II) dependent contraction of the actomyosin cytoskeleton, through a Rho-GTPase and Rho-associated kinase (ROCK). This induces rapid neuronal remodeling, such as retraction of neurites and axonal growth cones, elevated neuronal rigidity, and reshaping of somatodendritic morphology. Chronic pharmacological inhibition of NM II prevents cannabinoid-induced reduction of dendritic development in vitro and leads, similarly to blockade of endocannabinoid action, to excessive growth of corticofugal axons into the sub-ventricular zone in vivo. Our results suggest that CB1R can rapidly transform the neuronal cytoskeleton through actomyosin contractility, resulting in cellular remodeling events ultimately able to affect the brain architecture and wiring.

publication date

  • September 15, 2014

Research

keywords

  • Actomyosin
  • Cannabinoids
  • Cell Shape
  • Neurons

Identity

PubMed Central ID

  • PMC4179426

Scopus Document Identifier

  • 84964313138

Digital Object Identifier (DOI)

  • 10.7554/eLife.03159

PubMed ID

  • 25225054

Additional Document Info

volume

  • 3