Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Academic Article uri icon

Overview

abstract

  • Glioblastomas and brain metastases are highly proliferative brain tumors with short survival times. Previously, using (13)C-NMR analysis of brain tumors resected from patients during infusion of (13)C-glucose, we demonstrated that there is robust oxidation of glucose in the citric acid cycle, yet glucose contributes less than 50% of the carbons to the acetyl-CoA pool. Here, we show that primary and metastatic mouse orthotopic brain tumors have the capacity to oxidize [1,2-(13)C]acetate and can do so while simultaneously oxidizing [1,6-(13)C]glucose. The tumors do not oxidize [U-(13)C]glutamine. In vivo oxidation of [1,2-(13)C]acetate was validated in brain tumor patients and was correlated with expression of acetyl-CoA synthetase enzyme 2, ACSS2. Together, the data demonstrate a strikingly common metabolic phenotype in diverse brain tumors that includes the ability to oxidize acetate in the citric acid cycle. This adaptation may be important for meeting the high biosynthetic and bioenergetic demands of malignant growth.

authors

  • Mashimo, Tomoyuki
  • Pichumani, Kumar
  • Vemireddy, Vamsidhara
  • Hatanpaa, Kimmo J
  • Singh, Dinesh Kumar
  • Sirasanagandla, Shyam
  • Nannepaga, Suraj
  • Piccirillo, Sara G
  • Kovacs, Zoltan
  • Foong, Chan
  • Huang, Zhiguang
  • Barnett, Samuel
  • Mickey, Bruce E
  • DeBerardinis, Ralph J
  • Tu, Benjamin P
  • Maher, Elizabeth A
  • Bachoo, Robert M

publication date

  • December 18, 2014

Research

keywords

  • Acetate-CoA Ligase
  • Acetates
  • Brain Neoplasms
  • Citric Acid Cycle
  • Glioblastoma

Identity

PubMed Central ID

  • PMC4374602

Scopus Document Identifier

  • 84919903877

Digital Object Identifier (DOI)

  • 10.1016/j.cell.2014.11.025

PubMed ID

  • 25525878

Additional Document Info

volume

  • 159

issue

  • 7