Molecular Types of Methicillin-Resistant Staphylococcus aureus and Methicillin-Sensitive S. aureus Strains Causing Skin and Soft Tissue Infections and Nasal Colonization, Identified in Community Health Centers in New York City. Academic Article uri icon

Overview

abstract

  • In November 2011, The Rockefeller University Center for Clinical and Translational Science (CCTS), the Laboratory of Microbiology and Infectious Diseases, and Clinical Directors Network (CDN) launched a research and learning collaborative project with six community health centers in the New York City metropolitan area to determine the nature (clonal type) of community-acquired Staphylococcus aureus strains causing skin and soft tissue infections (SSTIs). Between November 2011 and March 2013, wound and nasal samples from 129 patients with active SSTIs suspicious for S. aureus were collected and characterized by molecular typing techniques. In 63 of 129 patients, the skin wounds were infected by S. aureus: methicillin-resistant S. aureus (MRSA) was recovered from 39 wounds and methicillin-sensitive S. aureus (MSSA) was recovered from 24. Most-46 of the 63-wound isolates belonged to the CC8/Panton-Valentine leukocidin-positive (PVL(+)) group of S. aureus clone USA300: 34 of these strains were MRSA and 12 were MSSA. Of the 63 patients with S. aureus infections, 30 were also colonized by S. aureus in the nares: 16 of the colonizing isolates were MRSA, and 14 were MSSA, and the majority of the colonizing isolates belonged to the USA300 clonal group. In most cases (70%), the colonizing isolate belonged to the same clonal type as the strain involved with the infection. In three of the patients, the identity of invasive and colonizing MRSA isolates was further documented by whole-genome sequencing.

publication date

  • June 10, 2015

Research

keywords

  • Carrier State
  • Genotype
  • Molecular Typing
  • Soft Tissue Infections
  • Staphylococcal Infections
  • Staphylococcal Skin Infections
  • Staphylococcus aureus

Identity

PubMed Central ID

  • PMC4508410

Scopus Document Identifier

  • 84938149978

Digital Object Identifier (DOI)

  • 10.1128/JCM.00591-15

PubMed ID

  • 26063853

Additional Document Info

volume

  • 53

issue

  • 8