Petrolatum: Barrier repair and antimicrobial responses underlying this "inert" moisturizer.
Academic Article
Overview
abstract
BACKGROUND: Petrolatum is a common moisturizer often used in the prevention of skin infections after ambulatory surgeries and as a maintenance therapy of atopic dermatitis (AD). However, the molecular responses induced by petrolatum in the skin have never been assessed. OBJECTIVE: We sought to define the cutaneous molecular and structural effects induced by petrolatum. METHODS: Thirty-six healthy subjects and 13 patients with moderate AD (mean SCORAD score, 39) were studied by using RT-PCR, gene arrays, immunohistochemistry, and immunofluorescence performed on control skin, petrolatum-occluded skin, and skin occluded with a Finn chamber only. RESULTS: Significant upregulations of antimicrobial peptides (S100A8/fold change [FCH], 13.04; S100A9/FCH, 11.28; CCL20/FCH, 8.36; PI3 [elafin]/FCH, 15.40; lipocalin 2/FCH, 6.94, human β-defensin 2 [DEFB4A]/FCH, 4.96; P < .001 for all) and innate immune genes (IL6, IL8, and IL1B; P < .01) were observed in petrolatum-occluded skin compared with expression in both control and occluded-only skin. Application of petrolatum also induced expression of key barrier differentiation markers (filaggrin and loricrin), increased stratum corneum thickness, and significantly reduced T-cell infiltrates in the setting of "normal-appearing" or nonlesional AD skin, which is known to harbor barrier and immune defects. CONCLUSIONS: Petrolatum robustly modulates antimicrobials and epidermal differentiation barrier measures. These data shed light on the beneficial molecular responses of petrolatum in barrier-defective states, such as AD and postoperative wound care.