Comparison of compressed sensing diffusion spectrum imaging and diffusion tensor imaging in patients with intracranial masses.
Academic Article
Overview
abstract
PURPOSE: To compare compressed diffusion spectrum imaging (CS-DSI) with diffusion tensor imaging (DTI) in patients with intracranial masses. We hypothesized that CS-DSI would provide superior visualization of the motor and language tracts. MATERIALS AND METHODS: We retrospectively analyzed 25 consecutive patients with intracranial masses who underwent DTI and CS-DSI for preoperative planning. Directionally-encoded anisotropy maps, and streamline hand corticospinal motor tracts and arcuate fasciculus language tracts were graded according to a 3-point scale. Tract counts, anisotropy, and lengths were also calculated. Comparisons were made using exact marginal homogeneity, McNemar's and Wilcoxon signed-rank tests. RESULTS: Readers preferred the CS-DSI over DTI anisotropy maps in 92% of the cases, and the CS-DSI over DTI tracts in 84%. The motor tracts were graded as excellent in 80% of cases for CS-DSI versus 52% for DTI; 58% of the motor tracts graded as acceptable in DTI were graded as excellent in CS-DSI (p=0.02). The language tracts were graded as excellent in 68% for CS-DSI versus none for DTI; 78% of the language tracts graded as acceptable by DTI were graded as excellent by CS-DSI (p<0.001). CS-DSI demonstrated smaller normalized mean differences than DTI for motor tract counts, anisotropy and language tract counts (p≤0.01). CONCLUSION: CS-DSI was preferred over DTI for the evaluation of motor and language white matter tracts in patients with intracranial masses. Results suggest that CS-DSI may be more useful than DTI for preoperative planning purposes.