Mutation in noncoding RNA RNU12 causes early onset cerebellar ataxia.
Academic Article
Overview
abstract
OBJECTIVE: Exome sequences account for only 2% of the genome and may overlook mutations causing disease. To obtain a more complete view, whole genome sequencing (WGS) was analyzed in a large consanguineous family in which members displayed autosomal recessively inherited cerebellar ataxia manifesting before 2 years of age. METHODS: WGS from blood-derived genomic DNA was used for homozygosity mapping and a rare variant search. RNA from isolated blood leukocytes was used for quantitative polymerase chain reaction (PCR), RNA sequencing, and comparison of the transcriptomes of affected and unaffected family members. RESULTS: WGS revealed a point mutation in noncoding RNA RNU12 that was associated with early onset cerebellar ataxia. The U12-dependent minor spliceosome edits 879 known transcripts. Reverse transcriptase PCR demonstrated minor intron retention in all of 9 randomly selected RNAs from this group, and RNAseq showed splicing disruption specific to all U12-type introns detected in blood monocytes from affected individuals. Moreover, 144 minor intron-containing RNAs were differentially expressed, including transcripts for 3 genes previously associated with cerebellar neurodegeneration. INTERPRETATION: Interference with particular spliceosome components, including small nuclear RNAs, cause reproducible uniquely distributed phenotypic and transcript-specific effects, making this an important category of disease-associated mutation. Our approach to differential expression analysis of minor intron-containing genes is applicable to other diseases involving altered transcriptome processing. ANN NEUROL 2017;81:68-78.