Phosphorylated Mechanistic Target of Rapamycin (p-mTOR) and Noncoding RNA Expression in Follicular and Hürthle Cell Thyroid Neoplasm. Academic Article uri icon

Overview

abstract

  • Oncocytic (Hürthle cell) and follicular neoplasms are related thyroid tumors with distinct molecular profiles. Diagnostic criteria separating adenomas and carcinomas for these two types of neoplasms are similar, but there may be some differences in the biological behavior of Hürthle cell and follicular carcinomas. Recent studies have shown that noncoding RNAs may have diagnostic and prognostic utility in separating benign and malignant Hürthle cell and follicular neoplasms. In this study, we examined expression of various noncoding RNAs including metastasis associated lung adenocarcinoma transcript 1 (MALAT1) and miR-RNA-885-5p (miR-885) in distinguishing between benign and malignant neoplasms. In addition, the expression of phosphorylated mechanistic receptor of rapamycin (p-mTOR) was also analyzed in these two groups of tumors. Tissue microarrays (TMAs) with archived tissue samples were analyzed using in situ hybridization (ISH) for MALAT1 and miR-885 and immunohistochemistry (IHC) for p-mTOR. Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) was also performed on a subset of the cases.MALAT1 and miR-885 were increased in all neoplastic groups compared to the normal thyroid tissues (p < 0.05). MALAT1 was more highly expressed in HCCs compared to FTCs, although the differences were not statistically significant (p = 0.06). MiR-885 was expressed at similar levels in FTCs and HCCs. P-mTOR protein was more highly expressed in FTCs than in HCCs (p<0.001). qRT-PCR analysis of noncoding RNAs supported the ISH findings. These results indicate that the noncoding RNAs MALAT1 and miR-885 show increased expression in neoplastic follicular and Hürthle cell thyroid neoplasms compared to normal thyroid tissues. P-mTOR was most highly expressed in FTC but was also increased in HCC, suggesting that drugs targeting this pathway may be useful for treatment of tumors unresponsive to conventional therapies.

publication date

  • September 1, 2017

Research

keywords

  • Adenocarcinoma, Follicular
  • Adenoma, Oxyphilic
  • Biomarkers, Tumor
  • RNA, Untranslated
  • TOR Serine-Threonine Kinases
  • Thyroid Neoplasms

Identity

Scopus Document Identifier

  • 85025118381

Digital Object Identifier (DOI)

  • 10.1007/s12022-017-9490-7

PubMed ID

  • 28660408

Additional Document Info

volume

  • 28

issue

  • 3