Who Makes It to the End?: A Novel Predictive Model for Identifying Surgical Residents at Risk for Attrition. Academic Article uri icon

Overview

abstract

  • OBJECTIVE: We present 8-year follow-up data from the intern class of 2007 to 2008 using a novel, nonparametric predictive model to identify those residents who are at greatest risk of not completing their training. BACKGROUND: Nearly 1 in every 4 categorical general surgery residents does not complete training. There has been no study at a national level to identify individual resident and programmatic factors that can be used to accurately anticipate which residents are most at risk of attrition out. METHODS: A cross-sectional survey of categorical general surgery interns was conducted between June and August 2007. Intern data including demographics, attendance at US or Canadian medical school, proximity of family members, and presence of family members in medicine were de-identified and linked with American Board of Surgery data to determine residency completion and program characteristics. A Classification and Regression Tree analysis was performed to identify groups at greatest risk for non-completion. RESULTS: Of 1048 interns, 870 completed the initial survey (response rate 83%), 836 of which had linkage data (96%). Also, 672 residents had evidence of completion of residency (noncompletion rate 20%). On Classification and Regression Tree analysis, sex was the independent factor most strongly associated with attrition. The lowest noncompletion rate for men was among interns at small community programs who were White, non-Hispanic, and married (6%). The lowest noncompletion rate for women was among interns training at smaller academic programs (11%). CONCLUSIONS: This is the first longitudinal cohort study to identify factors at the start of training that put residents at risk for not completing training. Data from this study offer a method to identify interns at higher risk for attrition at the start of training, and next steps would be to create and test interventions in a directed fashion.

publication date

  • September 1, 2017

Research

keywords

  • General Surgery
  • Internship and Residency
  • Models, Statistical

Identity

Scopus Document Identifier

  • 85021802086

Digital Object Identifier (DOI)

  • 10.1097/SLA.0000000000002384

PubMed ID

  • 28678064

Additional Document Info

volume

  • 266

issue

  • 3