C-reactive protein promotes bone destruction in human myeloma through the CD32-p38 MAPK-Twist axis. Academic Article uri icon

Overview

abstract

  • Bone destruction is a hallmark of myeloma and affects 80% of patients. Myeloma cells promote bone destruction by activating osteoclasts. In investigating the underlying mechanism, we found that C-reactive protein (CRP), a protein secreted in increased amounts by hepatocytes in response to myeloma-derived cytokines, activated myeloma cells to promote osteoclastogenesis and bone destruction in vivo. In mice bearing human bone grafts and injected with multiple myeloma cells, CRP bound to surface CD32 (also known as FcγRII) on myeloma cells, which activated a pathway mediated by the kinase p38 MAPK and the transcription factor Twist that enhanced the cells' secretion of osteolytic cytokines. Furthermore, analysis of clinical samples from newly diagnosed myeloma patients revealed a positive correlation between the amount of serum CRP and the number of osteolytic bone lesions. These findings establish a mechanism by which myeloma cells are activated to promote bone destruction and suggest that CRP may be targeted to prevent or treat myeloma-associated bone disease in patients.

publication date

  • December 12, 2017

Research

keywords

  • Bone Resorption
  • C-Reactive Protein
  • MAP Kinase Signaling System
  • Multiple Myeloma
  • Neoplasm Proteins
  • Nuclear Proteins
  • Receptors, IgG
  • Twist-Related Protein 1
  • p38 Mitogen-Activated Protein Kinases

Identity

PubMed Central ID

  • PMC5827954

Scopus Document Identifier

  • 85038426191

Digital Object Identifier (DOI)

  • 10.1126/scisignal.aan6282

PubMed ID

  • 29233917

Additional Document Info

volume

  • 10

issue

  • 509