The ERβ4 variant induces transformation of the normal breast mammary epithelial cell line MCF-10A; the ERβ variants ERβ2 and ERβ5 increase aggressiveness of TNBC by regulation of hypoxic signaling. Academic Article uri icon

Overview

abstract

  • Triple negative breast cancer (TNBC) still remains a challenge to treat in the clinic due to a lack of good targets for treatment. Although TNBC lacks expression of ERα, the expression of ERβ and its variants are detected quite frequently in this cancer type and can represent an avenue for treatment. We show that two of the variants of ERβ, namely ERβ2 and ERβ5, control aggressiveness of TNBC by regulating hypoxic signaling through stabilization of HIF-1α. RNA-seq of patient derived xenografts (PDX) from TNBC shows expression of ERβ2, ERβ4 and ERβ5 variants in more than half of the samples. Furthermore, expression of ERβ4 in the immortalized, normal mammary epithelial cell line MCF-10A that is resistant to tumorsphere formation caused transformation and development of tumorspheres. By contrast, ERβ1, ERβ2 or ERβ5 were unable to support tumorsphere formation. We have previously shown that all variants except ERβ1 stabilize HIF-1α but only ERβ4 appears to have the ability to transform normal mammary epithelial cells, pointing towards a unique property of ERβ4. We propose that ERβ variants may be good diagnostic tools and also serve as novel targets for treatment of breast cancer.

publication date

  • January 10, 2018

Identity

PubMed Central ID

  • PMC5844739

Scopus Document Identifier

  • 85042418657

Digital Object Identifier (DOI)

  • 10.18632/oncotarget.24134

PubMed ID

  • 29552303

Additional Document Info

volume

  • 9

issue

  • 15