The CCT chaperonin is a novel regulator of Ca2+ signaling through modulation of Orai1 trafficking. Academic Article uri icon

Overview

abstract

  • Store-operated Ca2+ entry (SOCE) encodes a range of cellular responses downstream of Ca2+ influx through the SOCE channel Orai1. Orai1 recycles at the plasma membrane (PM), with ~40% of the total Orai1 pool residing at the PM at steady state. The mechanisms regulating Orai1 recycling remain poorly understood. We map the domains in Orai1 that are required for its trafficking to and recycling at the PM. We further identify, using biochemical and proteomic approaches, the CCT [chaperonin-containing TCP-1 (T-complex protein 1)] chaperonin complex as a novel regulator of Orai1 recycling by primarily regulating Orai1 endocytosis. We show that Orai1 interacts with CCT through its intracellular loop and that inhibition of CCT-Orai1 interaction increases Orai1 PM residence. This increased residence is functionally significant as it results in prolonged Ca2+ signaling, early formation of STIM1-Orai1 puncta, and more rapid activation of NFAT (nuclear factor of activated T cells) downstream of SOCE. Therefore, the CCT chaperonin is a novel regulator of Orai1 trafficking and, as such, a modulator of Ca2+ signaling and effector activation kinetics.

publication date

  • September 26, 2018

Research

keywords

  • Calcium Signaling
  • Cell Membrane
  • Cell Movement
  • Chaperonin Containing TCP-1
  • Neoplasm Proteins
  • ORAI1 Protein
  • Stromal Interaction Molecule 1

Identity

PubMed Central ID

  • PMC6157965

Scopus Document Identifier

  • 85054060390

Digital Object Identifier (DOI)

  • 10.1126/sciadv.aau1935

PubMed ID

  • 30263962

Additional Document Info

volume

  • 4

issue

  • 9