miR-126 regulates glycogen trophoblast proliferation and DNA methylation in the murine placenta.
Academic Article
Overview
abstract
A functional placenta develops through a delicate interplay of its vascular and trophoblast compartments. We have identified a previously unknown expression domain for the endothelial-specific microRNA miR-126 in trophoblasts of murine and human placentas. Here, we determine the role of miR-126 in placental development using a mouse model with a targeted deletion of miR-126. In addition to vascular defects observed only in the embryo, loss of miR-126 function in the placenta leads to junctional zone hyperplasia at E15.5 at the expense of the labyrinth, reduced placental volume for nutrient exchange and intra-uterine growth restriction of the embryos. Junctional zone hyperplasia results from increased numbers of proliferating glycogen trophoblast (GlyT) progenitors at E13.5 that give rise to an expanded glycogen trophoblast population at E15.5. Transcriptomic profile of miR-126-/- placentas revealed dysregulation of a large number of GlyT (Prl6a1, Prl7c1, Pcdh12) and trophoblast-specific genes (Tpbpa, Tpbpb, Prld1) and genes with known roles in placental development. We show that miR-126-/- placentas, but not miR-126-/- embryos, display aberrant expression of imprinted genes with important roles in glycogen trophoblasts and junctional zone development, including Igf2, H19, Cdkn1c and Phlda2, during mid-gestation. We also show that miR126-/- placentas display global hypermethylation, including at several imprint control centers. Our findings uncover a novel role for miR-126 in regulating extra-embryonic energy stores, expression of imprinted genes and DNA methylation in the placenta.