Pathways- and epigenetic-based assessment of relative immune infiltration in various types of solid tumors. uri icon

Overview

abstract

  • Recent clinical studies document the power of immunotherapy in treating subsets of patients with advanced cancers. In this context and with multiple cancer immunotherapeutics already evaluated in the clinic and a large number in various stages of clinical trials, it is imperative to comprehensively examine genomics data to better comprehend the role of immunity in different cancers in predicting response to therapy and in directing appropriate therapies. The approach we chose is to scrutinize the pathways and epigenetic factors predicted to drive immune infiltration in different cancer types using publicly available TCGA transcriptional and methylation datasets, along with accompanying clinico-pathological data. We observed that the relative activation of T cells and other immune signaling pathways differs across cancer types. For example, pathways related to activation and proliferation of helper and cytotoxic T cells appear to be more highly enriched in kidney, skin, head and neck, and esophageal cancers compared to those of lung, colorectal, and liver or bile duct cancers. The activation of these immune-related pathways positively associated with prognosis in certain cancer types, most notably melanoma, head and neck, and cervical cancers. Integrated methylation and expression data (along with publicly available, ENCODE-generated histone ChIP Seq and DNAse hypersensitivity data) predict that epigenetic regulation is a primary factor driving transcriptional activation of a number of genes crucial to immunity in cancer, including T cell receptor genes (e.g., CD3D, CD3E), CTLA4, and GZMA. However, the extent to which epigenetic factors (primarily methylation at promoter regions) affect transcription of immune-related genes may vary across cancer types. For example, there is a high negative correlation between promoter CpG methylation and CD3D expression in renal and thyroid cancers, but not in brain tumors. The types of analyses we have undertaken provide insights into the relationships between immune modulation and cancer etiology and progression, offering clues into ways of therapeutically manipulating the immune system to promote immune recognition and immunotherapy.

publication date

  • March 6, 2019

Research

keywords

  • Lymphocytes, Tumor-Infiltrating
  • Neoplasms

Identity

Scopus Document Identifier

  • 85062419149

Digital Object Identifier (DOI)

  • 10.1016/bs.acr.2019.01.003

PubMed ID

  • 30885360

Additional Document Info

volume

  • 142