Studies of the influence of chloro-substituent sites and conformational energy in polychlorinated biphenyls on uroporphyrin formation in chick-embryo liver cell cultures. Academic Article uri icon

Overview

abstract

  • Treatment of cultured chick-embryo liver cells with polychlorinated biphenyls (PCB) results in decreased uroporphyrinogen decarboxylase activity and increased uroporphyrin accumulation. In the present study we examined the effect of the chloro- or bromo-substituent sites in biphenyls (BP) on uroporphyrin accumulation in cultured hepatocytes and the three-dimensional structure of these congeners determined by molecular orbital calculations using a MNDO ('modified neglect of diatomic overlap') method. Among 20 congeners examined, those which were effective in stimulating porphyrin accumulation contained at least two Cl or Br atoms at the lateral adjacent positions in each phenyl ring, e.g. 3,4,3',4'-tetrachloro-, 2,4,3',4'-tetrachloro-, 3,4,5,3',4',5'-hexachloro- and 3,4,5,3',4',5'-hexabromobiphenyl, whereas those which contained less than two halogen atoms or more than three halogen atoms in each phenyl ring or those which contained halogen atoms at 2,2'-positions were not effective. On the basis of the conformational energy (delta E, difference from the most stable conformational energy), which is calculated as a function of the dihedral angle (theta) between the two phenyl rings, biphenyl congeners can be classified into four groups with different conformations. The conformation of active PCB was relatively flexible, whereas inactive species had a rigidly angulated conformation. Furthermore, the calculated probability of the conformation distribution for each congener indicated that the probability of co-planarity was higher for active biphenyls than for inactive congeners. These structural characteristics suggest the significance of both the chloro-substituent sites and the conformational energy reflecting the phenyl-ring twist angles in determining the inhibitory effect of PCB on uroporphyrinogen decarboxylase activity.

publication date

  • April 1, 1986

Research

keywords

  • Liver
  • Polychlorinated Biphenyls
  • Porphyrins
  • Uroporphyrins

Identity

PubMed Central ID

  • PMC1146680

PubMed ID

  • 3091004

Additional Document Info

volume

  • 235

issue

  • 1