Minimizing Hyperglycemia-Induced Vascular Endothelial Dysfunction by Inhibiting Endothelial Sodium-Glucose Cotransporter 2 and Attenuating Oxidative Stress: Implications for Treating Individuals With Type 2 Diabetes. Academic Article uri icon

Overview

abstract

  • This overview deals with mechanisms whereby hyperglycemia-induced oxidative stress compromises vascular endothelial function and provides a background for a recently published study illustrating the beneficial impact of endothelial sodium-glucose cotransporter 2 (SGLT2) inhibitors in attenuating hyperglycemia-induced vascular dysfunction in vitro. The data provide new insight that can possibly lead to improved drug therapy for people with type 2 diabetes. The working hypotheses that underpinned the experiments performed are provided, along with the findings of the study. For the causes of hyperglycemia-induced vascular endothelial dysfunction, the findings point to the key roles of: 1) functional endothelial SGLT2; 2) oxidative stress-induced signalling pathways including mammalian sarcoma virus kinase, the EGF receptor-kinase and protein kinase C; and 3) mitochondrial dysfunction triggered by hyperglycemia was mitigated by an SGLT2 inhibitor in the hyperglycemic mouse aorta vascular organ cultures. The overview sums up the approaches implicated by the study that can potentially counteract the detrimental impact of hyperglycemia on vascular function in people with diabetes, including the clinical use of SGLT2 inhibitors for those with type 2 diabetes already being treated, for example, with metformin, along with dietary supplementation with broccoli-derived sulforaphane and tetrahydrobiopterin. The caveats associated with the study for extending the findings from mice to humans are summarized, pointing to the need to validate the work using vascular tissues from humans. Suggestions for future clinical studies are made, including the assessment of the impact of the therapeutic strategies proposed on measurements of blood flow in subjects with diabetes.

publication date

  • January 23, 2019

Research

keywords

  • Cardiovascular Diseases
  • Diabetes Mellitus, Type 2
  • Diabetic Angiopathies
  • Endothelium, Vascular
  • Hyperglycemia
  • Oxidative Stress
  • Sodium-Glucose Transporter 2
  • Sodium-Glucose Transporter 2 Inhibitors

Identity

Scopus Document Identifier

  • 85063496945

Digital Object Identifier (DOI)

  • 10.1016/j.jcjd.2019.01.005

PubMed ID

  • 30930073

Additional Document Info

volume

  • 43

issue

  • 7