Neutrophils express a receptor for iC3b, C3dg, and C3d that is distinct from CR1, CR2, and CR3. Academic Article uri icon

Overview

abstract

  • In the present study we examined human neutrophils for the expression of a receptor capable of binding C3dg and defined the relationship of this receptor to those that have been previously described, namely CR1, CR2, and CR3. C3dg was isolated from serum depleted of plasminogen, supplemented with 20 mM Mg++, and incubated at 37 degrees C for 6 to 8 days. The purified protein was homogeneous when analyzed by polyacrylamide gel electrophoresis and exhibited an apparent m.w. of 41,000. C3dg was polymerized by treatment with dimethyl suberimidate, and the dimer was isolated by gel filtration. Binding of both monomeric and dimeric 125I-labeled C3dg to neutrophils was saturable, and the latter ligand bound to an average of 12,400 sites/cell among nine normal individuals. At 4 degrees C, bound monomeric C3dg dissociated from neutrophils with an average t1/2 of 30 min, whereas dimeric C3dg dissociated with a t1/2 in excess of 120 min. Specific binding of multimeric C3dg was cation independent and was competitively inhibited by molar concentrations of iC3b and C3d that were equivalent to the inhibitory concentrations of unlabeled C3dg; C3b was less able to compete with C3dg for binding to these sites. The capacity of this neutrophil receptor to bind iC3b, C3dg, and C3d suggested its possible identity as CR2 or CR3. However, no specific binding to neutrophils of 125I-labeled HB-5 monoclonal anti-CR2 was detected. Furthermore, uptake of 125I-labeled C3dg was not inhibited by saturating concentrations of rabbit anti-CR1, anti-Mac-1, or OKM10. Thus, a receptor resides on neutrophils that binds the C3d region of iC3b and C3dg and is distinct from CR1, CR2, and CR3.

publication date

  • April 1, 1985

Research

keywords

  • Complement C3b
  • Neutrophils
  • Receptors, Complement

Identity

Scopus Document Identifier

  • 0021919119

PubMed ID

  • 3156185

Additional Document Info

volume

  • 134

issue

  • 4