Quantitative In Vivo Proteomics of Metformin Response in Liver Reveals AMPK-Dependent and -Independent Signaling Networks. Academic Article uri icon

Overview

abstract

  • Metformin is the front-line treatment for type 2 diabetes worldwide. It acts via effects on glucose and lipid metabolism in metabolic tissues, leading to enhanced insulin sensitivity. Despite significant effort, the molecular basis for metformin response remains poorly understood, with a limited number of specific biochemical pathways studied to date. To broaden our understanding of hepatic metformin response, we combine phospho-protein enrichment in tissue from genetically engineered mice with a quantitative proteomics platform to enable the discovery and quantification of basophilic kinase substrates in vivo. We define proteins whose binding to 14-3-3 are acutely regulated by metformin treatment and/or loss of the serine/threonine kinase, LKB1. Inducible binding of 250 proteins following metformin treatment is observed, 44% of which proteins bind in a manner requiring LKB1. Beyond AMPK, metformin activates protein kinase D and MAPKAPK2 in an LKB1-independent manner, revealing additional kinases that may mediate aspects of metformin response. Deeper analysis uncovered substrates of AMPK in endocytosis and calcium homeostasis.

authors

  • Stein, Benjamin
  • Calzolari, Diego
  • Hellberg, Kristina
  • Hu, Ying S
  • He, Lin
  • Hung, Chien-Min
  • Toyama, Erin Q
  • Ross, Debbie S
  • Lillemeier, Björn F
  • Cantley, Lewis
  • Yates, John R
  • Shaw, Reuben J

publication date

  • December 3, 2019

Research

keywords

  • AMP-Activated Protein Kinases
  • Liver
  • Metformin
  • Signal Transduction

Identity

PubMed Central ID

  • PMC6980792

Scopus Document Identifier

  • 85075823344

Digital Object Identifier (DOI)

  • 10.1016/j.celrep.2019.10.117

PubMed ID

  • 31801093

Additional Document Info

volume

  • 29

issue

  • 10