High-throughput phenotyping reveals expansive genetic and structural underpinnings of immune variation. Academic Article uri icon

Overview

abstract

  • By developing a high-density murine immunophenotyping platform compatible with high-throughput genetic screening, we have established profound contributions of genetics and structure to immune variation (http://www.immunophenotype.org). Specifically, high-throughput phenotyping of 530 unique mouse gene knockouts identified 140 monogenic 'hits', of which most had no previous immunologic association. Furthermore, hits were collectively enriched in genes for which humans show poor tolerance to loss of function. The immunophenotyping platform also exposed dense correlation networks linking immune parameters with each other and with specific physiologic traits. Such linkages limit freedom of movement for individual immune parameters, thereby imposing genetically regulated 'immunologic structures', the integrity of which was associated with immunocompetence. Hence, we provide an expanded genetic resource and structural perspective for understanding and monitoring immune variation in health and disease.

authors

publication date

  • December 16, 2019

Research

keywords

  • Enterobacteriaceae Infections
  • Genetic Variation
  • High-Throughput Screening Assays
  • Immunophenotyping
  • Salmonella Infections

Identity

PubMed Central ID

  • PMC7338221

Scopus Document Identifier

  • 85076893619

Digital Object Identifier (DOI)

  • 10.1038/s41590-019-0549-0

PubMed ID

  • 31844327

Additional Document Info

volume

  • 21

issue

  • 1