BCL9 provides multi-cellular communication properties in colorectal cancer by interacting with paraspeckle proteins. Academic Article uri icon

Overview

abstract

  • Colorectal cancer (CRC) is the third most commonly diagnosed cancer, which despite recent advances in treatment, remains incurable due to molecular heterogeneity of tumor cells. The B-cell lymphoma 9 (BCL9) oncogene functions as a transcriptional co-activator of the Wnt/β-catenin pathway, which plays critical roles in CRC pathogenesis. Here we have identified a β-catenin-independent function of BCL9 in a poor-prognosis subtype of CRC tumors characterized by expression of stromal and neural associated genes. In response to spontaneous calcium transients or cellular stress, BCL9 is recruited adjacent to the interchromosomal regions, where it stabilizes the mRNA of calcium signaling and neural associated genes by interacting with paraspeckle proteins. BCL9 subsequently promotes tumor progression and remodeling of the tumor microenvironment (TME) by sustaining the calcium transients and neurotransmitter-dependent communication among CRC cells. These data provide additional insights into the role of BCL9 in tumor pathogenesis and point towards additional avenues for therapeutic intervention.

publication date

  • January 7, 2020

Research

keywords

  • Colorectal Neoplasms
  • Transcription Factors

Identity

PubMed Central ID

  • PMC6946813

Scopus Document Identifier

  • 85077582338

Digital Object Identifier (DOI)

  • 10.1038/s41467-019-13842-7

PubMed ID

  • 31911584

Additional Document Info

volume

  • 11

issue

  • 1