Polyplex transfection from intracerebroventricular delivery is not significantly affected by traumatic brain injury. Academic Article uri icon

Overview

abstract

  • Traumatic brain injury (TBI) is largely non-preventable and often kills or permanently disables its victims. Because current treatments for TBI merely ameliorate secondary effects of the initial injury like swelling and hemorrhaging, strategies for the induction of neuronal regeneration are desperately needed. Recent discoveries regarding the TBI-responsive migratory behavior and differentiation potential of neural progenitor cells (NPCs) found in the subventricular zone (SVZ) have prompted strategies targeting gene therapies to these cells to enhance neurogenesis after TBI. We have previously shown that plasmid polyplexes can non-virally transfect SVZ NPCs when directly injected in the lateral ventricles of uninjured mice. We describe the first reported intracerebroventricular transfections mediated by polymeric gene carriers in a murine TBI model and investigate the anatomical parameters that dictate transfection through this route of administration. Using both luciferase and GFP plasmid transfections, we show that the time delay between injury and polyplex injection directly impacts the magnitude of transfection efficiency, but that overall trends in the location of transfection are not affected by injury. Confocal microscopy of quantum dot-labeled plasmid uptake in vivo reveals association between our polymers and negatively charged NG2 chondroitin sulfate proteoglycans of the SVZ extracellular matrix. We further validate that glycosaminoglycans but not sulfate groups are required for polyplex uptake and transfection in vitro. These studies demonstrate that non-viral gene delivery is impacted by proteoglycan interactions and suggest the need for improved polyplex targeting materials that penetrate brain extracellular matrix to increase transfection efficiency in vivo.

publication date

  • March 18, 2020

Research

keywords

  • Brain Injuries, Traumatic
  • Neural Stem Cells

Identity

PubMed Central ID

  • PMC7250725

Scopus Document Identifier

  • 85081994998

Digital Object Identifier (DOI)

  • 10.1016/j.jconrel.2020.03.025

PubMed ID

  • 32198024

Additional Document Info

volume

  • 322