Modulation of virus-induced NF-κB signaling by NEMO coiled coil mimics. Academic Article uri icon

Overview

abstract

  • Protein-protein interactions featuring intricate binding epitopes remain challenging targets for synthetic inhibitors. Interactions of NEMO, a scaffolding protein central to NF-κB signaling, exemplify this challenge. Various regulators are known to interact with different coiled coil regions of NEMO, but the topological complexity of this protein has limited inhibitor design. We undertook a comprehensive effort to block the interaction between vFLIP, a Kaposi's sarcoma herpesviral oncoprotein, and NEMO using small molecule screening and rational design. Our efforts reveal that a tertiary protein structure mimic of NEMO is necessary for potent inhibition. The rationally designed mimic engages vFLIP directly causing complex disruption, protein degradation and suppression of NF-κB signaling in primary effusion lymphoma (PEL). NEMO mimic treatment induces cell death and delays tumor growth in a PEL xenograft model. Our studies with this inhibitor reveal the critical nexus of signaling complex stability in the regulation of NF-κB by a viral oncoprotein.

publication date

  • April 14, 2020

Research

keywords

  • Intracellular Signaling Peptides and Proteins
  • Lymphoma, Primary Effusion
  • NF-kappa B

Identity

PubMed Central ID

  • PMC7156456

Scopus Document Identifier

  • 85083509315

Digital Object Identifier (DOI)

  • 10.1038/s41467-020-15576-3

PubMed ID

  • 32286300

Additional Document Info

volume

  • 11

issue

  • 1