Osteoclasts are bone-resorbing cells that play an essential role in the remodeling of bone under physiological conditions and numerous pathological conditions, such as osteoporosis, bone metastasis, and inflammatory bone erosion. Nuclear receptors are crucial to various physiological processes, including metabolism, development and inflammation, and function as transcription factors to activate target genes. Synthetic ligands of nuclear receptors are also available for the treatment of metabolic and inflammatory diseases. However, dysregulated bone phenotypes have been documented in patients who take synthetic nuclear receptor ligands as a therapy. Therefore, the effect of nuclear receptors on bone cells has become an important area of exploration; additionally, the molecular mechanisms underlying the action of nuclear receptors in osteoclasts have not been completely understood. Here, we cover the recent progress in our understanding of the roles of nuclear receptors in osteoclasts.