Qatari Genotype May Contribute to Complications in Type 2 Diabetes. Academic Article uri icon

Overview

abstract

  • OBJECTIVE: There is increasing evidence of a strong genetic component in type 2 diabetes (T2DM) that may contribute to diabetes complications. Given the high prevalence of diabetes with its associated complications in the Middle East, we sought to determine if the genotype within a Middle East population may be contributory. Therefore, three genotype-based Qatari ancestral groups, Q1 Arab Bedouin, Q2 Asian/Persian, and Q3 sub-Saharan African, with a fourth admixed group were correlated with T2DM prevalence and its complications to determine if they differed between the 4 Qatari ancestries, particularly for the SLMAP allele-associated diabetic retinopathy. METHODS: In this cross-sectional study, 398 Qatari subjects, 220 with and 178 without T2DM, were genotyped by Affymetrix 500k SNP arrays. Ancestry was correlated with diabetes complications. RESULTS: 398 subjects were included, the mean age was 49.8 years, and 56.8% were male. The genotype-based ancestry and T2DM prevalence were as follows: 164 (41.2%) with ancestry Q1, 60.4% with T2DM; 149 (37.4%) with ancestry Q2, 49.7% with T2DM; 31 (7.8%) with ancestry Q3, 61.3% with T2DM; and 54 (13.6%) with "admixed" ancestry, 51.9% with T2DM. For patients with diabetes, hypertension (p < 0.035) and retinopathy (p < 0.016) were greater in the Q3 ancestry. CONCLUSION: These data suggest that the genotype may contribute to complication risk, as exemplified by the increase in hypertension and retinopathy in the Q3 ancestry, though the SLMAP allele was not implicated; however, diabetes prevalence did not differ between the four Qatari ancestries.

publication date

  • June 8, 2020

Research

keywords

  • Diabetes Mellitus, Type 2
  • Diabetic Neuropathies
  • Diabetic Retinopathy
  • Hypertension

Identity

PubMed Central ID

  • PMC7303741

Scopus Document Identifier

  • 85087138563

Digital Object Identifier (DOI)

  • 10.1155/2020/6356973

PubMed ID

  • 32587868

Additional Document Info

volume

  • 2020