The active second-generation proteasome inhibitor oprozomib reverts the oxaliplatin-induced neuropathy symptoms. Academic Article uri icon

Overview

abstract

  • Oxaliplatin-induced neuropathy (OXAIN) is a major adverse effect of this antineoplastic drug, widely used in the treatment of colorectal cancer. Although its molecular mechanisms remain poorly understood, recent evidence suggest that maladaptive neuroplasticity and oxidative stress may participate to the development of this neuropathy. Given the role played on protein remodeling by ubiquitin-proteasome system (UPS) in response to oxidative stress and in neuropathic pain, we investigated whether oxaliplatin might cause alterations in the UPS-mediated degradation pathway, in order to identify new pharmacological tools useful in OXAIN. In a rat model of OXAIN (2.4 mg kg-1 i.p., daily for 10 days), a significant increase in chymotrypsin-(β5) like activity of the constitutive proteasome 26S was observed in the thalamus (TH) and somatosensory cortex (SSCx). In addition, the selective up-regulation of β5 and LMP7 (β5i) subunit gene expression was assessed in the SSCx. Furthermore, this study revealed that oprozomib, a selective β5 subunit proteasome inhibitor, is able to normalize the spinal prodynorphin gene expression upregulation induced by oxaliplatin, as well as to revert mechanical allodynia and thermal hyperalgesia observed in oxaliplatin-treated rats. These results underline the relevant role of UPS in the OXAIN and suggest new pharmacological targets to counteract this severe adverse effect. This preclinical study reveals the involvement of the proteasome in the oxaliplatin-induced neuropathy and adds useful information to better understand the molecular mechanism underlying this pain condition. Moreover, although further evidence is required, these findings suggest that oprozomib could be a therapeutic option to counteract chemotherapy-induced neuropathy.

publication date

  • October 1, 2020

Research

keywords

  • Antineoplastic Agents
  • Neuralgia
  • Oligopeptides
  • Oxaliplatin
  • Proteasome Inhibitors

Identity

Scopus Document Identifier

  • 85092258734

Digital Object Identifier (DOI)

  • 10.1016/j.bcp.2020.114255

PubMed ID

  • 33010214

Additional Document Info

volume

  • 182