Application of a diathesis-stress model to the interplay of cortical structural development and emerging depression in youth.
Review
Overview
abstract
Cross-sectional studies in adults have long identified differences in cortical structure in adults with depression compared to healthy adults, with most studies identifying reductions in grey matter volume, cortical thickness, and surface area in primarily frontal cortical regions including the OFC, ACC, and variable sub-regions of the PFC. However, when, why, and for whom these neural correlates of depression emerge remains poorly understood, necessitating developmental study of associations between depression and cortical structure. We systematically reviewed studies examining these associations in child/adolescent samples, and applied a developmentally-focused diathesis-stress model to understand the impacts of depressogenic risk-factors and stressors on the development of structural neural correlates of depression. Cross-sectional findings in youth are generally similar to those found in adults, but vary in magnitude and direction of effects. Preliminary evidence suggests that age, sex, severity, and comorbidity moderate these associations. Longitudinal studies show depression prospectively predicting cortical structure and structure predicting emerging depression. Consistent with a diathesis-stress model, associations have been noted between risk-factors for depression (e.g., genetic risk, family risk) and environmental stressors (e.g., early life stress) and structural neural correlates. Further investigation of these associations across development with attention to vulnerability factors and stressors is indicated.