Cancer immunotherapy via targeted TGF-β signalling blockade in TH cells. Academic Article uri icon

Overview

abstract

  • Cancer arises from malignant cells that exist in dynamic multilevel interactions with the host tissue. Cancer therapies aiming to directly kill cancer cells, including oncogene-targeted therapy and immune-checkpoint therapy that revives tumour-reactive cytotoxic T lymphocytes, are effective in some patients1,2, but acquired resistance frequently develops3,4. An alternative therapeutic strategy aims to rectify the host tissue pathology, including abnormalities in the vasculature that foster cancer progression5,6; however, neutralization of proangiogenic factors such as vascular endothelial growth factor A (VEGFA) has had limited clinical benefits7,8. Here, following the finding that transforming growth factor-β (TGF-β) suppresses T helper 2 (TH2)-cell-mediated cancer immunity9, we show that blocking TGF-β signalling in CD4+ T cells remodels the tumour microenvironment and restrains cancer progression. In a mouse model of breast cancer resistant to immune-checkpoint or anti-VEGF therapies10,11, inducible genetic deletion of the TGF-β receptor II (TGFBR2) in CD4+ T cells suppressed tumour growth. For pharmacological blockade, we engineered a bispecific receptor decoy by attaching the TGF-β-neutralizing TGFBR2 extracellular domain to ibalizumab, a non-immunosuppressive CD4 antibody12,13, and named it CD4 TGF-β Trap (4T-Trap). Compared with a non-targeted TGF-β-Trap, 4T-Trap selectively inhibited TH cell TGF-β signalling in tumour-draining lymph nodes, causing reorganization of tumour vasculature and cancer cell death, a process dependent on the TH2 cytokine interleukin-4 (IL-4). Notably, the 4T-Trap-induced tumour tissue hypoxia led to increased VEGFA expression. VEGF inhibition enhanced the starvation-triggered cancer cell death and amplified the antitumour effect of 4T-Trap. Thus, targeted TGF-β signalling blockade in helper T cells elicits an effective tissue-level cancer defence response that can provide a basis for therapies directed towards the cancer environment.

publication date

  • October 21, 2020

Research

keywords

  • Breast Neoplasms
  • Immunotherapy
  • Signal Transduction
  • T-Lymphocytes, Helper-Inducer
  • Transforming Growth Factor beta

Identity

PubMed Central ID

  • PMC8353603

Scopus Document Identifier

  • 85093094695

Digital Object Identifier (DOI)

  • 10.1038/s41586-020-2850-3

PubMed ID

  • 33087933

Additional Document Info

volume

  • 587

issue

  • 7832