Kinetics of osmotic stress regulate a cell fate switch of cell survival. Academic Article uri icon

Overview

abstract

  • Exposure of cells to diverse types of stressful environments differentially regulates cell fate. Although many types of stresses causing this differential regulation are known, it is unknown how changes over time of the same stressor regulate cell fate. Changes in extracellular osmolarity are critically involved in physiological and pathophysiological processes in several tissues. We observe that human cells survive gradual but not acute hyperosmotic stress. We find that stress, caspase, and apoptosis signaling do not activate during gradual stress in contrast to acute treatments. Contrary to the current paradigm, we see a substantial accumulation of proline in cells treated with gradual but not acute stresses. We show that proline can protect cells from hyperosmotic stress similar to the osmoprotection in plants and bacteria. Our studies found a cell fate switch that enables cells to survive gradually changing stress environments by preventing caspase activation and protect cells through proline accumulation.

publication date

  • February 19, 2021

Research

keywords

  • Caspases
  • Proline

Identity

PubMed Central ID

  • PMC7895434

Scopus Document Identifier

  • 85101398771

Digital Object Identifier (DOI)

  • 10.1126/sciadv.abe1122

PubMed ID

  • 33608274

Additional Document Info

volume

  • 7

issue

  • 8