Mammalian cells use the autophagy process to restrict avian influenza virus replication. Academic Article uri icon

Overview

abstract

  • Host adaptive mutations in the influenza A virus (IAV) PB2 protein are critical for human infection, but their molecular action is not well understood. We observe that when IAV containing avian PB2 infects mammalian cells, viral ribonucleoprotein (vRNP) aggregates that localize to the microtubule-organizing center (MTOC) are formed. These vRNP aggregates resemble LC3B-associated autophagosome structures, with aggresome-like properties, in that they cause the re-distribution of vimentin. However, electron microscopy reveals that these aggregates represent an accumulation of autophagic vacuoles. Compared to mammalian-PB2 virus, avian-PB2 virus induces higher autophagic flux in infected cells, indicating an increased rate of autophagosomes containing avian vRNPs fusing with lysosomes. We found that p62 is essential for the formation of vRNP aggregates and that the Raptor-interacting region of p62 is required for interaction with vRNPs through the PB2 polymerase subunit. Selective autophagic sequestration during late-stage virus replication is thus an additional strategy for host restriction of avian-PB2 IAV.

publication date

  • June 8, 2021

Research

keywords

  • Autophagy
  • Influenza A virus
  • Influenza in Birds
  • Virus Replication

Identity

Scopus Document Identifier

  • 85107441987

Digital Object Identifier (DOI)

  • 10.1016/j.celrep.2021.109213

PubMed ID

  • 34107256

Additional Document Info

volume

  • 35

issue

  • 10