A druggable pocket on PSMD10Gankyrin that can accommodate an interface peptide and doxorubicin.
Academic Article
Overview
abstract
BACKGROUND: PSMD10Gankyrin, a proteasomal chaperone is also an oncoprotein. Overexpression of PSMD10Gankyrin is associated with poor prognosis and survival in many cancers. Therefore, PSMD10Gankyrin is a sought-after drug target in many hard-to-treat cancers. However, its surface appears flat and undruggable. Here, we build on our earlier discovery of a common hot spot region that defined the interface of multiple interacting partners of PSMD10Gankyrin to expose vulnerable spots for a peptide and a small molecule inhibitor. METHODS: High throughput virtual screening was used to screen compounds against PSMD10Gankyrin. Interaction of PSMD10Gankyrin with the drug or protein (CLIC1) or peptide was studied using any one or more of these techniques; Microscale Thermophoresis, limited trypsinolysis, SPR and ITC. Cytotoxic effect of doxorubicin was evaluated using MTT assay. RESULTS: We identified doxorubicin as the first-generation small molecule inhibitor of PSMD10Gankyrin. K116 and to a lesser extent R41 on PSMD10Gankyrin contribute to the bulk of binding energy for the peptide EEVD, CLIC1 and doxorubicin. We further demonstrate that PSMD10Gankyrin is an intended target for doxorubicin in cells. GENERAL SIGNIFICANCE: Drug design against protein interactions in general and PSMD10Gankyrin in particular, remains a challenge. We provide consolidated biophysical evidence for the use of a shared interface motif EEVD as a possible inhibitor of interaction network in cancers driven by PSMD10Gankyrin. We identify a chemical scaffold for designing novel inhibitors of PSMD10Gankyrin. These findings will impact the field of protein interactions in the context of disease biology/drug discovery.