Near-Full-Length Single-Genome HIV-1 DNA Sequencing. Academic Article uri icon

Overview

abstract

  • HIV-1 integrates into human chromosomes to establish a lifelong reservoir of virally infected cells. However, the majority of integrated viral DNA shows lethal defects, likely due to errors introduced during reverse transcription of viral RNA. Identifying and quantifying HIV-1 DNA sequences that are genome-intact and can give rise to rebound viremia during antiretroviral treatment interruption are critical steps for understanding the complexity and evolutionary dynamics of HIV-1 reservoir cells. Here, we describe FLIP-Seq, (Full-Length Individual Proviral Sequencing) a near full-length, single-genome next-generation sequencing approach for analyzing HIV-1 DNA in human cells. Briefly, this technique involves sequential dilution of proviral DNA to single genomes, amplification of near full-length viral DNA, deep sequencing of amplification products, and a biocomputational analysis designed to distinguish genome-intact HIV-1 DNA from defective viral DNA species. This procedure can be performed with small numbers of cells from highly purified CD4 T cell subsets, allows to generate an absolute quantification of viral sequences present in a given cell population, provides insight into phylogenetic associations of intact proviruses, and can identify proportions of sequence-identical proviruses likely derived from clonally expanded reservoir cells.

publication date

  • January 1, 2022

Research

keywords

  • HIV Infections
  • HIV-1

Identity

PubMed Central ID

  • PMC9135474

Scopus Document Identifier

  • 85122837990

Digital Object Identifier (DOI)

  • 10.1128/JVI.01231-06

PubMed ID

  • 34985675

Additional Document Info

volume

  • 2407