Genetic Modification of the AAV5 Capsid with Lysine Residues Results in a Lung-tropic, Liver-detargeted Gene Transfer Vector. Academic Article uri icon

Overview

abstract

  • Intravenous (IV) administration of naturally occurring adeno-associated virus (AAV) vectors are liver tropic, with a significant proportion of the total vector dose mediating gene expression in liver hepatocytes. AAV capsids that are directed towards other organs such as lung may be useful for therapy of non-liver-based diseases. Based on the knowledge that the lung capillary endothelium is the first capillary bed encountered by an intravenously administered AAV vector, and that the lung endothelium glycocalyx is enriched in negatively charged sialic acid, we hypothesized that adding positively changed lysine residues to the AAV capsid would enhance AAV biodistribution to the lung following intravenous administration. Using site directed mutagenesis, two lysine residues were inserted into variable loop VIII of the AAV serotype 5 capsid vector (AAV5-PK2). Organ distribution of AAV5-PK2 was compared to AAV5, AAVrh.10, AAV2, and AAV2-7m8 4 wk after intravenous administration (1011 gc) to C57Bl/6 male mice. As predicted, following intravenous administration, AAAV5-PK2 had the highest biodistribution in the lung (p<0.02 compared to AAV5, AAVrh.10, AAV2 and AAV2-7m8). Further, biodistribution to liver of AAV5-PK2 was 2-logs decreased compared to AAV5 (p<10-4) with a ratio of AAV5-PK2 lung to liver of 62-fold compared to AAV5 of 0.2-fold (p<0.0003). The AAV5-PK2 capsid represents a lung-tropic AAV vector that is also significantly detargeted from the liver, a property that may be useful in lung directed gene therapies.

publication date

  • January 12, 2022

Research

keywords

  • Capsid
  • Parvovirinae

Identity

Digital Object Identifier (DOI)

  • 10.1089/hum.2021.200

PubMed ID

  • 35018834