Structural Prediction of Peptide-MHC Binding Modes. Review uri icon

Overview

abstract

  • The immune system is constantly protecting its host from the invasion of pathogens and the development of cancer cells. The specific CD8+ T-cell immune response against virus-infected cells and tumor cells is based on the T-cell receptor recognition of antigenic peptides bound to class I major histocompatibility complexes (MHC) at the surface of antigen presenting cells. Consequently, the peptide binding specificities of the highly polymorphic MHC have important implications for the design of vaccines, for the treatment of autoimmune diseases, and for personalized cancer immunotherapy. Evidence-based machine-learning approaches have been successfully used for the prediction of peptide binders and are currently being developed for the prediction of peptide immunogenicity. However, understanding and modeling the structural details of peptide/MHC binding is crucial for a better understanding of the molecular mechanisms triggering the immunological processes, estimating peptide/MHC affinity using universal physics-based approaches, and driving the design of novel peptide ligands. Unfortunately, due to the large diversity of MHC allotypes and possible peptides, the growing number of 3D structures of peptide/MHC (pMHC) complexes in the Protein Data Bank only covers a small fraction of the possibilities. Consequently, there is a growing need for rapid and efficient approaches to predict 3D structures of pMHC complexes. Here, we review the key characteristics of the 3D structure of pMHC complexes before listing databases and other sources of information on pMHC structures and MHC specificities. Finally, we discuss some of the most prominent pMHC docking software.

publication date

  • January 1, 2022

Research

keywords

  • Histocompatibility Antigens Class I
  • Major Histocompatibility Complex
  • Peptides

Identity

Scopus Document Identifier

  • 85126947761

Digital Object Identifier (DOI)

  • 10.1007/978-1-0716-1855-4_13

PubMed ID

  • 35298818

Additional Document Info

volume

  • 2405