Targeting Lysine-Specific Demethylase 1 Rescues Major Histocompatibility Complex Class I Antigen Presentation and Overcomes Programmed Death-Ligand 1 Blockade Resistance in SCLC. Academic Article uri icon

Overview

abstract

  • INTRODUCTION: SCLC is a highly aggressive neuroendocrine tumor that is characterized by early acquired therapeutic resistance and modest benefit from immune checkpoint blockade (ICB). Repression of the major histocompatibility complex class I (MHC-I) represents a key mechanism driving resistance to T cell-based immunotherapies. METHODS: We evaluated the role of the lysine-specific demethylase 1 (LSD1) as a determinant of MHC-I expression, functional antigen presentation, and immune activation in SCLC in vitro and in vivo through evaluation of both human SCLC cell lines and immunocompetent mouse models. RESULTS: We found that targeted inhibition of LSD1 in SCLC restores MHC-I cell surface expression and transcriptionally activates genes encoding the antigen presentation pathway. LSD1 inhibition further activates interferon signaling, induces tumor-intrinsic immunogenicity, and sensitizes SCLC cells to MHC-I-restricted T cell cytolysis. Combination of LSD1 inhibitor with ICB augments the antitumor immune response in refractory SCLC models. Together, these data define a role for LSD1 as a potent regulator of MHC-I antigen presentation and provide rationale for combinatory use of LSD1 inhibitors with ICB to improve therapeutic response in SCLC. CONCLUSIONS: Epigenetic silencing of MHC-I in SCLC contributes to its poor response to ICB. Our study identifies a previously uncharacterized role for LSD1 as a regulator of MHC-I antigen presentation in SCLC. LSD1 inhibition enables MHC-I-restricted T cell cytolysis, induces immune activation, and augments the antitumor immune response to ICB in SCLC.

publication date

  • June 9, 2022

Research

keywords

  • Antigen Presentation
  • Histocompatibility Antigens Class I
  • Histone Demethylases
  • Lung Neoplasms
  • Small Cell Lung Carcinoma

Identity

PubMed Central ID

  • PMC9357096

Scopus Document Identifier

  • 85133388188

Digital Object Identifier (DOI)

  • 10.1016/j.jtho.2022.05.014

PubMed ID

  • 35691495

Additional Document Info

volume

  • 17

issue

  • 8