Mechanistic modeling-guided optimization of microneedle-based skin patch for rapid transdermal delivery of naloxone for opioid overdose treatment. Academic Article uri icon

Overview

abstract

  • Naloxone, an FDA-approved opioid inhibitor, used to reverse opioid overdose complications has up till date faced challenges associated with its delivery. Limitations include the use of invasive delivery forms and the need for frequent redosing due to its short half-life. The goal of the current study was to design a transdermal rapidly dissolving polymeric microneedle (MN) patch with delivery and pharmacokinetic properties comparable to that seen with the commercially available NAL products, eliminating their delivery limitations. Patches of varying dimensions (500 µm; 100 array,800 µm; 100array, and 600 µm; 225 array) were fabricated to evaluate the effect of increasing MN length, and density (no. of needles/unit area) on drug release. Drug dose in each of these patches was 17.89 ± 0.23 mg, 17.2 ± 0.77 mg, and 17.8 ± 1.01 mg, respectively. Furthermore, the insertion efficiency of each of the MN patches was 94 ± 4.8%, 90.6 ± 1.69%, and 96 ± 1.29%, respectively. Compared to passive permeation, a reduced lag time of about 5-15 min was observed with a significant drug flux of 15.09 ± 7.68 g[Formula: see text]/cm2/h seen in the first 1 h (p < 0.05) with the array of 100 needles (500 µm long). Over 24 h, a four and ten-fold increase in permeation was seen with the longer length and larger density MN patch, respectively, when compared to the 500 µm (100 array) patch. Model simulations and analyses revealed the significance of needle base diameter and needle count in improving systemic pharmacokinetics of NAL.

publication date

  • July 25, 2022

Research

keywords

  • Naloxone
  • Opiate Overdose

Identity

Scopus Document Identifier

  • 85134711782

Digital Object Identifier (DOI)

  • 10.1007/s13346-022-01202-w

PubMed ID

  • 35879533

Additional Document Info

volume

  • 13

issue

  • 1