Structural basis for mechanotransduction in a potassium-dependent mechanosensitive ion channel. Academic Article uri icon

Overview

abstract

  • Mechanosensitive channels of small conductance, found in many living organisms, open under elevated membrane tension and thus play crucial roles in biological response to mechanical stress. Amongst these channels, MscK is unique in that its activation also requires external potassium ions. To better understand this dual gating mechanism by force and ligand, we elucidate distinct structures of MscK along the gating cycle using cryo-electron microscopy. The heptameric channel comprises three layers: a cytoplasmic domain, a periplasmic gating ring, and a markedly curved transmembrane domain that flattens and expands upon channel opening, which is accompanied by dilation of the periplasmic ring. Furthermore, our results support a potentially unifying mechanotransduction mechanism in ion channels depicted as flattening and expansion of the transmembrane domain.

publication date

  • November 12, 2022

Research

keywords

  • Ion Channel Gating
  • Potassium Channels

Identity

PubMed Central ID

  • PMC9653487

Scopus Document Identifier

  • 85141722178

Digital Object Identifier (DOI)

  • 10.1038/s41467-022-34737-0

PubMed ID

  • 36371466

Additional Document Info

volume

  • 13

issue

  • 1