Late gene expression-deficient cytomegalovirus vectors elicit conventional T cells that do not protect against SIV.
Academic Article
Overview
abstract
-
Rhesus cytomegalovirus (RhCMV)-based vaccine vectors induce immune responses that protect ~60% of rhesus macaques (RMs) from SIVmac239 challenge. This efficacy depends on induction of effector memory (EM)-biased CD8+ T cells recognizing SIV peptides presented by major histocompatibility complex (MHC)-E instead of MHC-Ia. The phenotype, durability, and efficacy of RhCMV/SIV-elicited cellular immune responses were maintained when vector spread was severely reduced by deleting the anti-host intrinsic immunity factor pp71. Here, we examined the impact of an even more stringent attenuation strategy on vector-induced immune protection against SIV. Fusion of the FK506-binding protein (FKBP) degradation domain to Rh108, the orthologue of the essential human CMV (HCMV) late gene transcription factor UL79, generated RhCMV/SIV vectors that conditionally replicate only when the FK506-analog Shield-1 is present. Despite lacking in vivo dissemination and reduced innate and B cell responses to vaccination, Rh108-deficient 68-1 RhCMV/SIV vectors elicited high frequency, durable, EM-biased, SIV-specific T cell responses in RhCMV-seropositive RM at doses of ≥106 PFU. Strikingly, elicited CD8+ T cells exclusively targeted MHC-Ia-restricted epitopes and failed to protect against SIVmac239 challenge. Thus, Rh108-dependent late gene expression is required for both induction of MHC-E-restricted T cells and protection against SIV.
publication date
published in