A machine learning model identifies patients in need of autoimmune disease testing using electronic health records. Academic Article uri icon

Overview

abstract

  • Systemic autoimmune rheumatic diseases (SARDs) can lead to irreversible damage if left untreated, yet these patients often endure long diagnostic journeys before being diagnosed and treated. Machine learning may help overcome the challenges of diagnosing SARDs and inform clinical decision-making. Here, we developed and tested a machine learning model to identify patients who should receive rheumatological evaluation for SARDs using longitudinal electronic health records of 161,584 individuals from two institutions. The model demonstrated high performance for predicting cases of autoantibody-tested individuals in a validation set, an external test set, and an independent cohort with a broader case definition. This approach identified more individuals for autoantibody testing compared with current clinical standards and a greater proportion of autoantibody carriers among those tested. Diagnoses of SARDs and other autoimmune conditions increased with higher model probabilities. The model detected a need for autoantibody testing and rheumatology encounters up to five years before the test date and assessment date, respectively. Altogether, these findings illustrate that the clinical manifestations of a diverse array of autoimmune conditions are detectable in electronic health records using machine learning, which may help systematize and accelerate autoimmune testing.

publication date

  • April 25, 2023

Research

keywords

  • Autoimmune Diseases
  • Electronic Health Records

Identity

PubMed Central ID

  • PMC10130143

Scopus Document Identifier

  • 85154541547

Digital Object Identifier (DOI)

  • 10.1038/s41467-023-37996-7

PubMed ID

  • 37169741

Additional Document Info

volume

  • 14

issue

  • 1