The HuMet Repository: Watching human metabolism at work.
Overview
abstract
The human metabolism constantly responds to stimuli such as food intake, fasting, exercise, and stress, triggering adaptive biochemical processes across multiple metabolic pathways. To understand the role of these processes and disruptions thereof in health and disease, detailed documentation of healthy metabolic responses is needed but still scarce on a time-resolved metabolome-wide level. Here, we present the HuMet Repository, a web-based resource for exploring dynamic metabolic responses to six physiological challenges (exercise, 36 h fasting, oral glucose and lipid loads, mixed meal, cold stress) in healthy subjects. For building this resource, we integrated existing and newly derived metabolomics data measured in blood, urine, and breath samples of 15 young healthy men at up to 56 time points during the six highly standardized challenge tests conducted over four days. The data comprise 1.1 million data points acquired on multiple platforms with temporal profiles of 2,656 metabolites from a broad range of biochemical pathways. By embedding the dataset into an interactive web application, we enable users to easily access, search, filter, analyze, and visualize the time-resolved metabolomic readouts and derived results. Users can put metabolites into their larger context by identifying metabolites with similar trajectories or by visualizing metabolites within holistic metabolic networks to pinpoint pathways of interest. In three showcases, we outline the value of the repository for gaining biological insights and generating hypotheses by analyzing the wash-out of dietary markers, the complementarity of metabolomics platforms in dynamic versus cross-sectional data, and similarities and differences in systemic metabolic responses across challenges. With its comprehensive collection of time-resolved metabolomics data, the HuMet Repository, freely accessible at https://humet.org/ , is a reference for normal, healthy responses to metabolic challenges in young males. It will enable researchers with and without computational expertise, to flexibly query the data for their own research into the dynamics of human metabolism.