Poster Session: Oculomotor influences on retinal input signals in myopia. Academic Article uri icon

Overview

abstract

  • Studies of emmetropization have traditionally focused on the spatial characteristics of visual input signals. Yet the input to the retina is not a two-dimensional pattern but a temporally-varying luminance flow. The temporal structure of this flow is predominately determined by eye movements, as the human eyes move incessantly. Even when fixating on a single point, a persistent motion known as ocular drift reformats the luminance flow in a way that counterbalances the spectra of natural scenes. It is established that emmetropes are highly sensitive to these luminance modulations. However, their visual consequences in myopia and hyperopia are unknown. Here, we first review how the temporal-frequency distribution of retinal input signals varies with the amount of ocular drift. We then use a detailed optical/geometrical model of the eye to study how the eye movements jointly shape retinal input as a function of refraction. We show that, within the temporal range of sensitivity of the retina, the spatial frequency distribution of the input signals conveys signed information about defocus. Specifically, for a given degree of defocus, myopic retinas experience more power from low spatial frequency stimuli than hyperopic retinas. These redistribution of input power may have a consequence during eye growth supporting the proposal that eye movements should be taken into consideration in the process of emmetropization.

publication date

  • September 1, 2023

Research

keywords

  • Hyperopia
  • Myopia

Identity

Digital Object Identifier (DOI)

  • 10.1167/jov.23.11.42

PubMed ID

  • 37733536

Additional Document Info

volume

  • 23

issue

  • 11