Persistent Deficits in Bone Quality in Treated Acromegaly: Evidence From Assessments of Microstructure.
Academic Article
Overview
abstract
PURPOSE: Fractures are increased in patients with acromegaly, both before and after successful acromegaly treatment. Abnormalities of bone microstructure, which may underlie this fragility, are present in active acromegaly but to what extent these improve with acromegaly treatment or persist despite biochemical remission remains unclear. To examine these questions, we studied the effects of acromegaly treatment and remission on bone quality. METHODS: Sixty-five women and men with acromegaly were studied. Subgroups underwent assessments of areal bone mineral density by dual x-ray absorptiometry, trabecular bone score (TBS), and volumetric bone mineral density, microarchitecture, stiffness and failure load of the distal radius and tibia by high-resolution peripheral quantitative tomography in a longitudinal study before and after acromegaly treatment and in a cross-sectional study in which patients were compared to sex-, age-, and body mass index-matched healthy controls. RESULTS: In the longitudinal study, significant increases in total, cortical, and trabecular densities at the radius and tibia and increased stiffness and failure load of the tibia occurred with acromegaly treatment. In the cross-sectional study, patients in biochemical remission after surgery had larger bones, lower trabecular and cortical volumetric density, and disrupted trabecular microarchitecture compared to controls. TBS did not change with acromegaly treatment but correlated with some microstructural parameters. CONCLUSION: We show, for the first time, that volumetric bone mineral density and microarchitecture of the peripheral skeleton improve with acromegaly treatment but remain abnormal in patients in remission after surgery compared to controls. These abnormalities, known to be associated with fractures in other populations, may play a role in the pathogenesis of persistent fragility in treated acromegaly.