The Molecular Logic of Gtr1/2 and Pib2 Dependent TORC1 Regulation in Budding Yeast. uri icon

Overview

abstract

  • The Target of Rapamycin kinase Complex I (TORC1) regulates cell growth and metabolism in eukaryotes. Previous studies have shown that, in Saccharomyces cerevisiae, nitrogen and amino acid signals activate TORC1 via the highly conserved small GTPases, Gtr1/2, and the phosphatidylinositol 3-phosphate binding protein, Pib2. However, it was unclear if/how Gtr1/2 and Pib2 cooperate to control TORC1. Here we report that this dual regulator system pushes TORC1 into three distinct signaling states: (i) a Gtr1/2 on, Pib2 on, rapid growth state in nutrient replete conditions; (ii) a Gtr1/2 off, Pib2 on, adaptive/slow growth state in poor-quality growth medium; and (iii) a Gtr1/2 off, Pib2 off, quiescent state in starvation conditions. We suggest that other signaling pathways work in a similar way, to drive a multi-level response via a single kinase, but the behavior has been overlooked since most studies follow signaling to a single reporter protein.

publication date

  • December 7, 2023

Identity

PubMed Central ID

  • PMC10723367

Digital Object Identifier (DOI)

  • 10.1101/2023.12.06.570342

PubMed ID

  • 38106135