Characterizing Molecular and Synaptic Signatures in mouse models of Late-Onset Alzheimer's Disease Independent of Amyloid and Tau Pathology. uri icon

Overview

abstract

  • INTRODUCTION: MODEL-AD is creating and distributing novel mouse models with humanized, clinically relevant genetic risk factors to more accurately mimic LOAD than commonly used transgenic models. METHODS: We created the LOAD2 model by combining APOE4, Trem2*R47H, and humanized amyloid-beta. Mice aged up to 24 months were subjected to either a control diet or a high-fat/high-sugar diet (LOAD2+HFD) from two months of age. We assessed disease-relevant outcomes, including in vivo imaging, biomarkers, multi-omics, neuropathology, and behavior. RESULTS: By 18 months, LOAD2+HFD mice exhibited cortical neuron loss, elevated insoluble brain Aβ42, increased plasma NfL, and altered gene/protein expression related to lipid metabolism and synaptic function. In vivo imaging showed age-dependent reductions in brain region volume and neurovascular uncoupling. LOAD2+HFD mice also displayed deficits in acquiring touchscreen-based cognitive tasks. DISCUSSION: Collectively the comprehensive characterization of LOAD2+HFD mice reveal this model as important for preclinical studies that target features of LOAD independent of amyloid and tau.

publication date

  • December 20, 2023

Identity

PubMed Central ID

  • PMC10769232

Digital Object Identifier (DOI)

  • 10.1101/2023.12.19.571985

PubMed ID

  • 38187716