Hybrid Magnetic Resonance Positron Emission Tomography Is Associated With Cardiac-Related Outcomes in Cardiac Sarcoidosis.
Academic Article
Overview
abstract
BACKGROUND: Imaging with late gadolinium enhancement (LGE) magnetic resonance (MR) and 18F-fluorodeoxyglucose (18F-FDG) PET allows complementary assessment of myocardial injury and disease activity and has shown promise for improved characterization of active cardiac sarcoidosis (CS) based on the combined positive imaging outcome, MR(+)PET(+). OBJECTIVES: This study aims to evaluate qualitative and quantitative assessments of hybrid MR/PET imaging in CS and to evaluate its association with cardiac-related outcomes. METHODS: A total of 148 patients with suspected CS underwent hybrid MR/PET imaging. Patients were classified based on the presence/absence of LGE (MR+/MR-), presence/absence of 18F-FDG (PET+/PET-), and pattern of 18F-FDG uptake (focal/diffuse) into the following categories: MR(+)PET(+)FOCAL, MR(+)PET(+)DIFFUSE, MR(+)PET(-), MR(-)PET(+)FOCAL, MR(-)PET(+)DIFFUSE, MR(-)PET(-). Further analysis classified MR positivity based on %LGE exceeding 5.7% as MR(+/-)5.7%. Quantitative values of standard uptake value, target-to-background ratio, target-to-normal-myocardium ratio (TNMRmax), and T2 were measured. The primary clinical endpoint was met by the occurrence of cardiac arrest, ventricular tachycardia, or secondary prevention implantable cardioverter-defibrillator (ICD) before the end of the study. The secondary endpoint was met by any of the primary endpoint criteria plus heart failure or heart block. MR/PET imaging results were compared between those meeting or not meeting the clinical endpoints. RESULTS: Patients designated MR(+)5.7%PET(+)FOCAL had increased odds of meeting the primary clinical endpoint compared to those with all other imaging classifications (unadjusted OR: 9.2 [95% CI: 3.0-28.7]; P = 0.0001), which was higher than the odds based on MR or PET alone. TNMRmax achieved an area under the receiver-operating characteristic curve of 0.90 for separating MR(+)PET(+)FOCAL from non-MR(+)PET(+)FOCAL, and 0.77 for separating those reaching the clinical endpoint from those not reaching the clinical endpoint. CONCLUSIONS: Hybrid MR/PET image-based classification of CS was statistically associated with clinical outcomes in CS. TNMRmax had modest sensitivity and specificity for quantifying the imaging-based classification MR(+)PET(+)FOCAL and was associated with outcomes. Use of combined MR and PET image-based classification may have use in prognostication and treatment management in CS.